Sains Malaysiana 54(3)(2025): 927-941
http://doi.org/10.17576/jsm-2025-5403-23
A New Gompertz-Three-Parameter-Lindley Distribution for
Modeling Survival Time Data
(Taburan Gompertz-Tiga-Parameter-Lindley Baharu untuk Memodelkan Data Masa Kemandirian)
FEI LIANG1, HEZHI LU1,2,* &
YUHANG XI1
1School of Economics and Statistics,
Guangzhou University, Guangzhou 510006, China
2Lingnan Research
Academy of Statistical Science, Guangzhou University, Guangzhou 510006, China
Diserahkan: 20 Mei 2024/Diterima: 2 Disember 2024
Abstract
In this paper, a new
survival distribution is introduced. It is a mixture of the Gompertz
distribution and three-parameter-Lindley distribution. The statistical
properties of the proposed distribution including the shape properties,
cumulative distribution, quantile functions, moment generating function,
failure rate function, mean residual function, and stochastic orders are
studied. Moreover, a new regression model based on the proposed distribution is
presented. Maximum likelihood estimators (MLEs) of unknown parameters are
obtained via differential evolution algorithms, and simulation studies are conducted to
evaluate the consistency of the MLEs. Finally, the proposed model and its
regression model are applied to a real dataset and compared with other
well-known models, demonstrating their superior performance, particularly for
heavy-tailed data.
Keywords: Differential
evolution algorithm; Gompertz-Lindley distribution; maximum likelihood
estimation; regression model; structural property
Abstrak
Dalam kertas ini, suatu taburan survival baharu diperkenalkan. Ia adalah campuran taburan Gompertz dan taburan tiga parameter-Lindley. Sifat statistik bagi taburan yang dicadangkan termasuk sifat bentuk, taburan kumulatif, fungsi kuantil, fungsi penjanaan momen, fungsi kadar kegagalan, fungsi baki min dan susunan stokastik dikaji. Selain itu, model regresi baharu berdasarkan pengedaran yang dicadangkan dibentangkan. Anggaran kebolehjadian maksimum (MLE) bagi parameter yang tidak diketahui diperoleh melalui algoritma evolusi pembezaan, dan kajian simulasi dijalankan untuk menilai ketekalan MLE. Akhir sekali, model yang dicadangkan dan model regresinya digunakan pada set data sebenar dan dibandingkan dengan model terkenal lain, menunjukkan prestasi unggul mereka, terutamanya untuk data berat.
Kata kunci: Algoritma evolusi berbeza; anggaran kebolehjadian maksimum; model regresi; sifat struktur; taburan Gompertz-Lindley
RUJUKAN
Alizadeh, M., Benkhelifa, L., Rasekhi,
M. & Hosseini, B. 2020. The odd log-logistic generalized gompertz distribution: Properties, applications and
different methods of estimation. Communications in Mathematics and
Statistics 8: 295-317.
Al-Omari,
A.I., Ciavolino, E. & Al-Nasser, A.D. 2020.
Economic design of acceptance sampling plans for truncated life tests using
three-parameter Lindley distribution. Journal of Modern Applied Statistical
Methods 18(2): 2-15.
Benkhelifa, L. 2017. The beta
generalized Gompertz distribution. Applied Mathematical Modelling 52:
341-357.
Boshi, M.A.A., Abid, S.H. & Al-Noor, N.H. 2019.
Generalized Gompertz - Generalized Gompertz distribution. Journal of Physics-Conference
Series 1234: 012112.
Eghwerido, J.T., Ogbo,
J.O. & Omotoye, A.E. 2021. The
Marshall-Olkin-Gompertz distribution: Properties and applications. Statistica 81: 183-215.
El-Damcese,
M.A., Mustafa, A., El-Desouky, B.S. & Mustafa, M.E. 2015. The odd
generalized exponential gompertz distribution. Applied
Mathematics 6: 2340-2353.
Gavrilov, L. & Gavrilova, N. 2001. The
reliability theory of aging and longevity. Journal of Theoretical Biology 213: 527-545.
Ghitany, M., Alqallaf,
F. &
Balakrishnan, N. 2014. On the likelihood estimation of the parameters of
Gompertz distribution based on complete and progressively type-Il censored
samples. Journal of Statistical Computation and Simulation 84: 1803-1812.
Ghitany, M.E., Atieh,
B. & Nadarajah, S. 2008. Lindley distribution and its application. Mathematics
and Computers in Simulation 78(4): 493-506.
Ghitany, M.E., Aboukhamseen,
S.M., Baqer, A.A. & Gupta, R.C. 2019. Gompertz-Lindley distribution and
associated inference. Communications in Statistics-Simulation Computation 51(5): 2599-2618.
Jafari, A., Tahmasebi, S. & Alizadeh, M. 2014. The beta-gompertz distribution. Revista Colombiana De Estadistica 37: 141-158.
Jayakumar, K. & Shabeer, A.M. 2022. On a generalization of
Gompertz distribution and its applications. Journal of the Indian Society
for Probability and Statistics 23: 241-265.
Lenart, A. 2014. The moments of the Gompertz distribution and
maximum likelihood estimation of its parameters. Scandinavian Actuarial
Journal 3: 255-277.
Lenart, A. & Missov, T. 2016.
Goodness-of-fit tests for the Gompertz distribution. Communications in
Statistics - Theory and Methods 45: 2920-2937.
Lindley,
D.V. 1958. Fiducial distributions and Bayes theorem. Journal of the Royal Statistical
Society Series B 20: 102-107.
Marshall, A.W. & Olkin, I.
1997. A new method for adding a parameter to a family of distributions with
application to the exponential and Weibull families. Biometrika 84: 641-652.
Ou, X.H., Lu, H.Z. & Kong,
J.S. 2022. The structural properties of the Gompertz-Two-Parameter- Lindley
distribution and associated inference. Open Mathematics 20(1):
1581-1593.
Shen, L.J., Zeng, Q., Guo, P.,
Huang, J.J., Li, C.F., Pan, T., Chang, B.Y., Wu, N., Yang, L.W., Chen, Q.F.,
Huang, T., Li, W. & Wu, P.H. 2018. Dynamically prognosticating patients
with hepatocellular carcinoma through survival paths mapping based on
time-series data, Nature Communications 9: 2230.
Shaked, M. & Shanthikumar, J.G. 2007. Stochastic Orders. New
York: Springer.
Shama, M.S., Dey, S., Altun, E.
& Afify, A.Z. 2022. The Gamma-Gompertz distribution: Theory and
applications. Mathematics and Computers in Simulation 193: 689-712.
Shanker, R. & Sharma, S.
2013. A two-parameter Lindley distribution for modeling waiting and survival
times data. Applied Mathematics 4: 363-368.
Shanker,
R., Shukla, K.K. & Mishra, A. 2017. A three-parameter weighted Lindley
distribution and its applications to model survival time. Statistics in
Transition New Series 18(2): 291-310.
Shaker,
R., Shukla, K.K., Shanker, R. & Leonida, T.A. 2017. A three-parameter Lindley
distribution. American Journal of Mathematics and Statistics 7(1): 15-26.
Thamer,
M.K. & Zine, R. 2023. Statistical properties and estimation of the three-parameter
Lindley distribution with application to COVID-19 data. Sains Malaysiana 52(2): 669-682.
Xi, Y.H.,
Lu, H.Z. & Liang, F. 2024. On a new transmuted three-parameter Lindley distribution
and its applications. Sains Malaysiana53(6): 1427-1440.
*Pengarang untuk surat-menyurat; email: luhz@gzhu.edu.cn